Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recent advances in ferroic materials have identified topological defects as promising candidates for enabling additional functionalities in future electronic systems. The generation of stable and customizable polar topologies is needed to achieve multistates that enable beyond-binary device architectures. In this study, we show how to autonomously pattern on-demand highly tunable striped closure domains in pristine rhombohedral-phase BiFeO3 thin films through precise scanning of a biased atomic force microscopy tip along carefully designed paths. By employing this strategy, we generate and manipulate closed-loop structures with high spatial resolution in an automated manner, allowing the creation of highly tunable and intricate topological domain structures that exhibit distinct polarization configurations without the need for electrode deposition or complex heterostructure growth. As a proof-of-concept for ferroelectric beyond-binary memory devices, we use such topological domains as multistates, engineering an alphabet and automating the symbolic writing/reading process using autonomous microscopy. The resulting information density is compared with that of current commercially available memory devices, demonstrating the potential of ferroelectric topological domains for multistate information storage applications.more » « lessFree, publicly-accessible full text available July 22, 2026
-
Hierarchical assemblies of ferroelectric nanodomains, so-called super-domains, can exhibit exotic morphologies that lead to distinct behaviours. Controlling these super-domains reliably is critical for realizing states with desired functional properties. Here we reveal the super-switching mechanism by using a biased atomic force microscopy tip, that is, the switching of the in-plane super-domains, of a model ferroelectric Pb0.6Sr0.4TiO3. We demonstrate that the writing process is dominated by a super-domain nucleation and stabilization process. A complex scanning-probe trajectory enables on-demand formation of intricate centre-divergent, centre-convergent and flux-closure polar structures. Correlative piezoresponse force microscopy and optical spectroscopy confirm the topological nature and tunability of the emergent structures. The precise and versatile nanolithography in a ferroic material and the stability of the generated structures, also validated by phase-field modelling, suggests potential for reliable multi-state nanodevice architectures and, thereby, an alternative route for the creation of tunable topological structures for applications in neuromorphic circuits.more » « less
-
Experimental science is enabled by the combination of synthesis, imaging, and functional characterization organized into evolving discovery loop. Synthesis of new material is typically followed by a set of characterization steps aiming to provide feedback for optimization or discover fundamental mechanisms. However, the sequence of synthesis and characterization methods and their interpretation, or research workflow, has traditionally been driven by human intuition and is highly domain specific. Here, we explore concepts of scientific workflows that emerge at the interface between theory, characterization, and imaging. We discuss the criteria by which these workflows can be constructed for special cases of multiresolution structural imaging and functional characterization, as a part of more general material synthesis workflows. Some considerations for theory–experiment workflows are provided. We further pose that the emergence of user facilities and cloud labs disrupts the classical progression from ideation, orchestration, and execution stages of workflow development. To accelerate this transition, we propose the framework for workflow design, including universal hyperlanguages describing laboratory operation, ontological domain matching, reward functions and their integration between domains, and policy development for workflow optimization. These tools will enable knowledge-based workflow optimization; enable lateral instrumental networks, sequential and parallel orchestration of characterization between dissimilar facilities; and empower distributed research.more » « less
-
Ferroelectricity in van der Waals (vdW) layered material has attracted a great deal of interest recently. CuInP2S6 (CIPS), the only vdW layered material whose ferroelectricity in the bulk was demonstrated by direct polarization measurements, was shown to remain ferroelectric down to a thickness of a few nanometers. However, its ferroelectric properties have just started to be explored in the context of potential device applications. We report here the preparation and measurements of metal-ferroelectric semiconductor-metal heterostructures using nanosheets of CIPS obtained by mechanical exfoliation. Four bias voltage and polarization dependent resistive states were observed in the current–voltage characteristics, which we attribute to the formation of ferroelectric Schottky diode, along with switching behavior.more » « less
-
Abstract Domain switching pathways in ferroelectric materials visualized by dynamic piezoresponse force microscopy (PFM) are explored via variational autoencoder, which simplifies the elements of the observed domain structure, crucially allowing for rotational invariance, thereby reducing the variability of local polarization distributions to a small number of latent variables. For small sampling window sizes the latent space is degenerate, and variability is observed only in the direction of a single latent variable that can be identified with the presence of domain wall. For larger window sizes, the latent space is 2D, and the disentangled latent variables can be generally interpreted as the degree of switching and complexity of domain structure. Applied to multiple consecutive PFM images acquired while monitoring domain switching, the polarization switching mechanism can thus be visualized in the latent space, providing insight into domain evolution mechanisms and their correlation with the microstructure.more » « less
-
Abstract Cesium‐based quasi‐2D halide perovskites (HPs) offer promising functionalities and low‐temperature manufacturability, suited to stable tandem photovoltaics. However, the chemical interplays between the molecular spacers and the inorganic building blocks during crystallization cause substantial phase complexities in the resulting matrices. To successfully optimize and implement the quasi‐2D HP functionalities, a systematic understanding of spacer chemistry, along with the seamless navigation of the inherently discrete molecular space, is necessary. Herein, by utilizing high‐throughput automated experimentation, the phase complexities in the molecular space of quasi‐2D HPs are explored, thus identifying the chemical roles of the spacer cations on the synthesis and functionalities of the complex materials. Furthermore, a novel active machine learning algorithm leveraging a two‐stage decision‐making process, called gated Gaussian process Bayesian optimization is introduced, to navigate the discrete ternary chemical space defined with two distinctive spacer molecules. Through simultaneous optimization of photoluminescence intensity and stability that “tailors” the chemistry in the molecular space, a ternary‐compositional quasi‐2D HP film realizing excellent optoelectronic functionalities is demonstrated. This work not only provides a pathway for the rational and bespoke design of complex HP materials but also sets the stage for accelerated materials discovery in other multifunctional systems.more » « less
An official website of the United States government
